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Abstract
We provide a detailed study of biasless coherent transport of singlet electron pairs in
one-dimensional (1D) channels induced by electron–electron interactions that are time varying
in certain spatially localized regions of the channel. When the time variation is cyclic, the
mechanism is analogous to the adiabatic quantum pumping of charge and spin previously
studied. However, the presence of interactions that vary only in localized regions of space
requires an intrinsically two-body description, which is irreducible to the 1D single-particle
scattering matrix elements that are sufficient to describe quantum pumping of charge and spin.
Here we derive a generalized theory for the pumping of such interacting pairs starting from first
principles. We show that the standard description of charge pumping is contained within our
more broadly applicable expressions. We then apply our general results to a concrete lattice
model and obtain an exact analytical expression for the pumped singlet current. We further
demonstrate that such a model can be implemented with a chain of currently available quantum
dots with certain minor modifications that we suggest; we present a detailed numerical
feasibility analysis of the characteristics of such experimentally realizable quantum dots,
showing that the requirements for a measurable pumped singlet current are within the
experimental range.

1. Introduction

Pumping mechanisms have attracted research attention
in recent years, both experimental [1–8] and theoreti-
cal [9–12, 22, 13–21, 23], because they provide a remarkable
alternative means of generating current in nanostructures.
Such mechanisms use time-varying parameters or potentials to
achieve the flow, rather than the application of a bias. While
the basic idea behind such a pump follows from classical
intuition, in nanostructures quantum mechanics can introduce
novel features that make ‘quantum pumping’ a rich and non-
trivial process. For example, a quantum dot with time-varying
couplings to pinched-off leads will pump electrons in a process
that is analogous to the classical pumping of water through
a lock in a canal [1, 2]; here the Coulomb blockade plays
the role of gravity, limiting the amount of charge that can
flow through the dot in each pumping cycle. However, in
an open quantum dot system, time-varying parameters lead
to changes in the electron wavefunction [24, 25], leading to
modulation of the spatial probability density that results in
a net transfer of particle density through the region of time
variation. This quantum mechanical process is subtle and
cannot be understood with classical intuition alone.

The concept of quantum pumping is a very broad
one, generically relevant when a channel has time-varying
parameters. As a result, one can imagine using pumping to
transport any quantity associated with quantum mechanical
wavefunctions that can be varied in time with relative ease.
Charge [6, 7, 9, 12, 15, 16] and spin [5, 11, 14, 20] have
been primarily considered for pumping. These quantities can
be associated with single particles. Their pumping is most
often computed within an independent particle approximation,
although there have been studies that have computed their
pumping in a strongly correlated system like a Luttinger
liquid [26, 27].

In a recent paper [10], we proposed the quantum pumping
of a two-particle quantity—electron singlet pairs. This
is relevant from an applications standpoint as well as a
fundamental physics point of view. A pair of electrons in
a singlet state is spin entangled [28], and coherent transport
of entangled states is essential for quantum information [29].
Describing the pumping of a two-particle quantity is quite
different from the usual quantum pumping theory of single-
particle quantities. As one of the two main topics of this paper,
we derive a theory that is capable of describing singlet pumping
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and also incorporates standard quantum pumping cases. The
inherent presence of two-body interaction in pumping singlet
pairs makes the theoretical description significantly more
involved than the commonly used models based upon single-
particle scattering matrix elements [9]. Thus a primary goal
of the paper is to provide a detailed analysis of the necessary
theory for a singlet pump.

The second topic of this paper is a study of the
experimental feasibility of a quantum singlet pump based upon
a detailed numerical analysis of an experimentally realizable
system involving quantum dots. We find that, with laboratory
systems already available, the implementation of a singlet
pump could be possible.

The paper has roughly three parts. The first part
involves the derivation of our approach to quantum pumping
and comprises sections 2, 3, and 4. Section 2 defines a
singlet current and interacting two-particle states. Section 3
develops the theory of a singlet pump starting from an
adiabatic perturbation expansion. These sections rely on
Green functions theorems appearing in appendices A and B.
Section 4 demonstrates that our results recover the established
theory when one considers quantum charge pumping of single
electrons. The second part of the paper appears in section 5,
which describes a physical model based upon a two-particle
analogue of a turnstile, involving a chain of quantum dots.
An analytic expression for the singlet current in that model is
derived using the Green function theorems in the appendices
once again. The third and last part, comprising sections 6, 7
and 8, is devoted to a feasibility analysis of a proposed
experimental implementation of a singlet pump based upon
the physical model presented in section 5. Section 6 suggests
use of a specific design of quantum dot similar to an
experimentally realized dot, and the spatial potential energy
profile of an electron in the dot is numerically computed.
Section 7 evaluates the energy of two electrons in such a dot,
and finally section 8 demonstrates that such a dot has the
features necessary for generating a pure singlet current while
suppressing current of single particles and triplet pairs.

2. Singlet current

2.1. Definition of the current

The quantum mechanical current density is generally defined
from the continuity equation by considering the time variation
of the single-particle density. In order to discuss quantum
pumping of singlets, we need to have an appropriate definition
of a singlet current. We thus begin with another continuity
equation. The probability that, within a one-dimensional
system, there is one electron at position and spin X1 ≡ (x1, σ1)

and another at X2 is 〈ψ̂†(X1, t)ψ̂†(X2, t)ψ̂(X2, t)ψ̂(X1, t)〉.
Here, ψ̂†(X1, t) = eiH t/h̄ψ̂†(X1)e−iH t/h̄ and ψ̂†(X1) creates
an electron at X1. Here and henceforth, all expectation values
are taken with respect to the N particle state of the system |N〉.
Averaging over the position x2 of the second electron, we find
from the Schrödinger equation that

∂

∂ t

∫
dx2

〈
ψ̂†(X1, t)ψ̂†(X2, t)ψ̂(X2, t)ψ̂(X1, t)

〉

= ∂

∂x1

[
h̄

2mi

∫
dx2

(
∂

∂x1
− ∂

∂x ′
1

)

× 〈ψ̂†(X1, t)ψ̂†(X2, t)ψ̂(X2, t)ψ̂(X ′
1, t)〉

]
X1=X ′

1

.

We are led to the definition of the spin-specific two-particle
current density

J (x1, σ1, σ2, t)

= eh̄

m

∫
dx2 Im{∂x1ρ2(X1, X2; X ′

1, X2, t)}X1=X ′
1

in terms of the two-particle reduced density matrix

ρ2(X1, X2; X ′
1, X ′

2, t)

=
〈
ψ̂†(X1, t)ψ̂†(X2, t)ψ̂(X ′

2, t)ψ̂(X ′
1, t)

〉
. (1)

A summation over the two spins would yield a current
analogous to the usual definition of current but for the flow of
pairs of particles rather than single particles; for a single pair
of particles that are in momentum eigenstates we would obtain
the average current density of the pair.

We can expand the two-particle density matrix in terms of
energy eigenstates discussed in appendix C,

ρ2(X1, X2; X ′
1, X ′

2, t)

=
∫

dE f̄ (E)�∗
E(X1, X2, t)�E(X

′
1, X ′

2, t)

where E signifies the available energy of a pair of particles
and f̄ (E) is a distribution function for the pair, which we
take to depend only on the total energy E of the pair. As
we demonstrate in section 3.3, this is consistent with the
fundamental physical requirement that no current flows in the
absence of pumping or bias.

In the absence of interaction, the two-particle density
matrix can be separated into singlet and triplet spin subspaces.
The pair interactions that we consider do not affect spin
by assumption, hence such a separation would continue to
apply. Furthermore, the energy eigenstates would also be
spin eigenstates, so we factorize the states �E(X1, X2, t) =
�ν

E(x1, x2, t)χν , where χν is a singlet χS or a triplet χTσ=0,±1

spin state, and effects of the time-dependent potential are felt
only by the spatial part �E(x1, x2, t). Thus we write the two-
particle density matrix as

ρ2 = ρS ⊗ χSχ
†
S +

∑
σ=0,±1

ρT,σ ⊗ χT,σ χ
†
T,σ

(2)

where ρS = �∗
E,S(x1, x2, t)�E,S(x1, x2, t) and ρTσ =

�∗
E,Tσ

(x1, x2, t)�E,Tσ (x1, x2, t) denote the spatial compo-
nents. The energy dependence on the spin states is implicit.
We can then define the current density for each spin subspace.
For singlets we have

JS(x, t) = eh̄

m

∫
dx2 Im{∂x1ρS(x1, x2; x ′

1x2, t)}x1=x′
1

= eh̄

m

∫
dE f (E)

∫
dx2

×
∫

dk1

2π

∫
dk2

2π
δ

(
h̄2k2

1

2m
+ h̄2k2

2

2m
− E

)

× Im
{
∂x1�k1,k2 (x1, x2, t)�∗

k1,k2
(x ′

1, x2, t)
}

x1=x′
1

(3)
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where we have parameterized the spatially symmetric singlet
states �E,S(x1, x2, t) = �k1,k2(x1, x2, t) by single-particle
momenta k1 and k2 corresponding to the non-interacting
momentum eigenstates from which these states can be
generated as we show in the following subsection. The symbol
f (E) denotes the state occupation only within the singlet
subspace.

We note that JS gives the flow of probability of finding
one member of a singlet at x1 irrespective of the location of
the other member. If we average over the position of the other
particle, we will obtain the expectation of the current over the
length of the system.

2.2. Interacting two-particle states

Suppose our system has the time-independent many-body
Hamiltonian

Ĥ =
∫

dXψ̂†(X)h(x)ψ̂(X)

+
∫

dX
∫

dX ′ψ̂†(X)ψ̂†(X ′)V (x, x ′)ψ̂(X ′)ψ̂(X) (4)

where h(x) = − h̄2

2m
∂2

∂x2 + W (x) is a first quantized single-
particle Hamiltonian with some external potential W (x). The
equation of motion for �k1,k2 (x1, x2, t) can be derived directly
from the Schrödinger equation. One finds that with suitable
approximations (see appendix C) a two-particle equation
arises,[

ih̄
∂

∂ t
− h(x1)− h(x2)− V (x1, x2)

]
�k1,k2 (x1, x2, t) = 0

⇒ [E(k1, k2)− H0 − V (x1, x2)]�k1,k2 (x1, x2, t) = 0 (5)

where H0 = h(x1) + h(x2) and �k1,k2 (x1, x2, t) has the
trivial time dependence �k1,k2 (x1, x2, t) = e−iE(k1,k2)t/h̄�̃k1,k2

(x1, x2, t).
If the one-body potential and two-body interaction were

absent, the solution would simply take the form of free singlet
states

�k̄(x̄) = 1√
2
[φk1(x1)φk2 (x2)+ φk1(x2)φk2 (x1)] (6)

where φk denotes a single-particle momentum eigenstate with
momentum h̄k, and where we have introduced the notation
x̄ ≡ {x1, x2} and k̄ ≡ {k1, k2}. Even in the presence of a
one-body potential, this form still holds except that the single-
particle states would be defined by h(x)φk(x) = Ekφk(x).

In the presence of the two-body interaction V (x̄) =
V (x1, x2), the interacting or scattering singlet states � can
be expressed in terms of the free state � by the Lippmann–
Schwinger (LS) equation

�k̄(x̄) = �k̄(x̄)+
∫

dx̄ ′G(x̄, x̄ ′; E)V (x̄ ′)�k̄(x̄
′) (7)

where the full retarded two-particle Green function satisfies

[E − H0 − V (x̄)]G(x̄, x̄ ′; E) = δ(x̄ − x̄ ′).

A few comments about expression (7) are in order. First,
due to the two-body interaction, the scattering state generally

Figure 1. (a) Schematic diagram of a one-dimensional system in
which the two-body interaction V (x1, x2; t) acts when x1 and x2 are
both within a finite interval near −l or when both are within a finite
interval near l .

involves a range of momenta, so the subscript k̄ there
simply serves as a book-keeping label to indicate the non-
interacting state that generates it. Second, although the
wavefunctions are singlet functions, the expression involves
the unsymmetrized full retarded two-particle Green function
G(x̄, x̄ ′; E). Finally, equation (7) applies to any two-particle
wavefunction, regardless of its symmetry. If we choose a
symmetric, spin-independent potential, the symmetry of the
free states is preserved by the scattering and �k̄(x̄) will have
whatever symmetry �k̄(x̄) has. In our case, we are interested
in the evolution of a spatially symmetric singlet state, so we
apply (7) to this case. It is not as interesting to consider
the pumping of triplet wavefunctions since the current could
consist of an unspecified superposition of all three different
triplet spin states.

3. Pumped singlet current

3.1. Pumping via interaction

Since the equation of motion (7) does not inherently
distinguish between singlet and triplet states, if we wish to
pump only singlets we need to find a potential that only affects
singlets. Obviously, manipulating the external potential W (x)
in (4) would affect single-particle states as well as singlets.
Thus, we focus on the two-particle interaction V (x, x ′). Within
our one-dimensional system we consider a time-varying two-
particle interaction that exists at two specific localized regions,
as shown in figure 1. Two electrons interact only when they are
both in one such region. If either electron is outside the regions,
there is no interaction, and we assume that the interaction
vanishes between an electron at one region and an electron at
the other region. Physically, if each region is sufficiently well
localized in space, and if the one-dimensional system consists
of a single channel, the Pauli exclusion principle will disallow
two electrons in a triplet state from both occupying the same
region. As a result, electrons in a triplet will not feel the
interaction. Only singlets will feel its effects. The specifics
of how such a localized interaction could be implemented are
discussed in section 5. For our derivations below, we will
assume that it is exactly true that the interaction V (x̄, t) at
each site affects only singlets, and that triplets are completely
unaffected by it.

3.2. Adiabatic perturbation

The most commonly used description of quantum pumping
employs the well known Brouwer formula [9] that derives
directly from the Landauer–Buttiker formalism. Another
common description uses Flouquet theory [18, 19]. Since these

3
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approaches rely upon a single-particle scattering matrix in 1D,
not appropriate for describing interacting pairs, we have taken
an a priori approach rooted in adiabatic perturbation as used by
Thouless [24] in his original paper on quantum pumping. This
approach has been used in some recent papers [16] as well.
This will merely constitute our point of departure, because we
have the significant complication of interacting particles with
pumping driven by the interaction, while the previous studies
were derived in a single-particle picture.

The singlet current in equation (3) is defined in terms of a
time-dependent singlet two-particle state�k̄(x̄). Therefore the
determination of the pumped current reduces to describing the
evolution of this singlet state in the presence of a time-varying
interaction V (x̄, t)

H = H0 + V (x̄, t) (8)

in equation (5). Here, the free Hamiltonian H0 is still time
independent and its two-body energy eigenstates are still of
the form shown in equation (6) comprised of symmetric
combinations of single-particle eigenstates.

For an adiabatic process, the potential, or the two-particle
interaction in our case, is assumed to vary slowly compared to
the time spent by the particles in the region of the potential;
i.e., the dwell time is much shorter than the time for variations
in the potential [30]. As a result, it is appropriate to insert the
ansatz �k̄(x̄, t) = e−i

∫
dt E(k̄,t)/h̄�̃k̄(x̄, t) into equation (5); we

are left with

ih̄
∂

∂ t
�̃k̄(x̄, t) = [H0 + V (x̄)− E(k̄, t)]�̃k̄(x̄, t). (9)

Henceforth we will drop the tilde symbol on �̃; the phase
e−i

∫
dt E(k̄,t)/h̄ that distinguishes � from �̃ does not affect the

current (3) in any case. To find a zeroth order solution, we
neglect the time derivative and solve the instantaneous equation

[E(k̄, t)− H0 − V (x̄, t)]� t
k̄
(x̄) = 0 (10)

where the time t is simply a parameter. This equation
on inversion becomes the Lippman–Schwinger equation,
equation (7), for the instantaneous scattering state � t

k̄
(x̄). To

find corrections, we evaluate the instantaneous Green function

[E − H0 − V (x̄, t)]Gt (x̄, x̄ ′; E) = δ(x̄ − x̄ ′), (11)

and note that the exact solution to (9) is

�k̄(x̄, t) = � t
k̄
(x̄)− ih̄

∫
dx̄ ′Gt(x̄, x̄ ′; E)

∂

∂ t
�k̄(x̄

′, t). (12)

Iterating this equation, we can compute corrections to the
zeroth order solution � t

k̄
(x̄). To first order,

�k̄(x̄, t) 
 � t
k̄
(x̄)− ih̄

∫
dx̄ ′Gt(x̄, x̄ ′; E)

∂

∂ t
� t

k̄
(x̄ ′)

≡ � t
k̄
(x̄)+�k̄(x̄, t). (13)

Higher orders are left out here because of the assumption of
adiabaticity. Taking the derivatives of equations (10) and (11)

with respect to time yields the following important identities
for the time derivatives of the instantaneous functions:

�̇ t
k̄
(x̄) =

∫
dx̄ ′Gt (x̄, x̄ ′; E)V̇ (x̄ ′, t)� t

k̄
(x̄ ′)

Ġt(x̄, x̄ ′; E) =
∫

dx̄ ′′Gt (x̄, x̄ ′; E)V̇ (x̄ ′′, t)Gt (x̄ ′′, x̄ ′; E)

(14)
which allow us to write the second term in equation (13) (the
term first order in the time derivative) as

�k̄(x̄, t) = −ih̄
∫

dx̄ ′Gt (x̄, x̄ ′; E)�̇ t(x̄ ′)

= − ih̄
∫

dx̄ ′
∫

dx̄ ′′Gt(x̄, x̄ ′; E)Gt(x̄ ′, x̄ ′′; E)

× V̇ (�x ′′)� t(�x ′′) (15)

while the zeroth order term is simply� t
k̄
(x̄) determined by the

Lippmann–Schwinger equation (7).
Henceforth, we sometimes simplify notation by writ-

ing G(x̄, x̄ ′) instead of Gt(x̄, x̄ ′; E).

3.3. Zeroth order: no spontaneous current

At the zeroth order in the time dependence, at each instant the
system is unaware of the fact that the potential is changing.
Since there is no bias either, the current should vanish, because
a non-vanishing current at this order would essentially be
a spontaneous current, which is unphysical. In order to
demonstrate that our definition of the singlet current passes
this crucial test, we explicitly evaluate the current at the zeroth
order in the time derivative, which is given by

J0 = eh̄

m

∫
dE f (E)

∫
dx2

∫
dk1

2π

∫
dk2

2π

× δ
(

h̄2k2
1

2m
+ h̄2k2

2

2m
− E

)
Im

{
� t∗

k̄
(x̄)∂x1�

t
k̄
(x̄)

}
.

Using the identity for the free two-particle Green function

Im{G0(x̄, x̄ ′; E)} = −π
∫

dk̄δ

(
h̄2k̄2

2m
− E

)
�k̄(x̄)�

∗
k̄
(x̄ ′)

(16)
together with the Lippman–Schwinger equation (7), we can
reduce the expression (16) to

J0 = −eh̄

πm

∫
dE f (E)

∫
dx2 Im

[
∂x1 Im {G0(x̄, x̄ ′)}

+
∫

dx̄ ′′{∂x1 G(x̄; x̄ ′′)}V (x̄ ′′) Im{G0(x̄
′′, x̄)}

+
∫

dx̄ ′G∗(x̄; x̄ ′)V (x̄ ′)∂x1 Im {G0(x̄, x̄ ′)}

+
∫

dx̄ ′
∫

dx̄ ′′{G∗(x̄; x̄ ′)V (x̄ ′)}

× ∂x1 {G(x̄; x̄ ′′)V (x̄ ′′)}Im{G0(x̄
′′, x̄ ′)}

]
. (17)

The first term vanishes immediately because it involves
the imaginary part of a real number. Then, after
some manipulations where we use the Lippmann–Schwinger
equation and the Dyson equation G = G0+G0V G, along with

4
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the reciprocity property of the Green functions, the expression
for the current at the zeroth order can be reduced to

J0 = eh̄

2πm

∫
dE f (E)

∫
dx̄ ′

∫
dx̄ ′′V (x̄ ′)V (x̄ ′′)

× Im

{
iG(x̄ ′′; x̄ ′)

∫
dx2

[
G0(x̄

′, x̄)∂x1 G0(x̄; x̄ ′′)
]

− iG∗(x̄ ′′; x̄ ′)
∫

dx2
[
G∗

0(x̄; x̄ ′′)∂x1 G∗
0(x̄, x̄ ′)

]}
. (18)

The kernel of the integral is of the form F × IGG(x1, x̄ ′, x̄ ′′)
evaluated in equation (B.11) in appendix B (here F =
iG(x ′, x ′′; E)). Such an integral was shown to vanish for
|x1| > |x ′

1|, |x ′′
1 |. This applies here since the current is

measured outside the region of interaction and the variables
x ′

1 and x ′′
1 are associated with the localized interaction factors

V (x̄ ′) and V (x̄ ′′). Therefore the net current at the zeroth order
vanishes, J0 = 0.

3.4. First order: adiabatic pumped current

The pumped current to first adiabatic order is a bilinear form
involving the zeroth order wavefunction � t

k̄
(x̄) and the first

order wavefunction correction �k̄(x̄, t) from equation (13):

J1 = eh̄

m

∫
dE f (E)

∫
dx2

×
∫

dk1

2π

∫
dk2

2π
δ

(
h̄2k2

1

2m
+ h̄2k2

2

2m
− E

)

× Im
{
� t∗

k̄
(x̄)∂x1�k̄(x̄, t)+�∗

k̄
(x̄, t)∂x1�

t
k̄
(x̄)

}
.

(19)

Using the identity in equation (16) and by multiple use of
the Lippmann–Schwinger equation and the Dyson equation, in
a straightforward but lengthy calculation, the above expression
can be reduced to

J1 = − eh̄2

2πm

∫
dE f (E)

∫
dx̄ ′

∫
dx̄ ′′V̇ (x̄ ′′)

∫
dx2

× [{
G∗(x̄ ′′, x̄)− G(x̄ ′′, x̄)

}
∂x1

{
G(x̄, x̄ ′)G(x̄ ′x̄ ′′)

}
− {

G∗(x̄, x̄ ′)G∗(x̄ ′x̄ ′′)
}
∂x1

{
G∗(x̄, x̄ ′′)− G(x̄, x̄ ′′)

}]
.

(20)

The identity
∫

dx̄ ′G(x̄, x̄ ′)G(x̄ ′, x̄ ′′) = −∂EG(x̄, x̄ ′′)
(appendix A) then transforms this to

J1 = J1a + J1b

J1a = h̄2

2πm

∫
dE f (E)

∂

∂E

×
[∫

dx̄ ′′V̇ (x̄ ′′)
∫

dx2 Im{G∗(x̄ ′′, x̄; E)∂x1 G(x̄, x̄ ′′; E)}
]

J1b = h̄2

2πm

∫
dE f (E)

∫
dx̄ ′

∫
dx̄ ′′V̇ (x̄ ′′)

× Im

{
G∗(x̄ ′, x̄ ′′; E)

∫
dx2G∗(x̄, x̄ ′; E)∂x1 G∗(x̄, x̄ ′′; E)

+ G(x̄ ′, x̄ ′′; E)
∫

dx2G(x̄ ′′, x̄; E)∂x1 G(x̄, x̄ ′; E)

}
.

(21)

We will now show that for any observation point x1 greater
than the region of non-vanishing V , the term J1b would not
contribute in a periodically varying pumping cycle. We should
first point out that the terms in J1b are not complex conjugates,
due to the asymmetry with respect to the exchange of x̄ ′ ↔ x̄ ′′,
so we cannot argue that taking the imaginary part makes it
vanish. Using the Dyson equation we can make the following
expansion:

Im

{
G∗(x̄ ′, x̄ ′′; E)

∫
dx2G∗(x̄, x̄ ′; E)∂x1 G∗(x̄, x̄ ′′; E)

+ G(x̄ ′, x̄ ′′; E)
∫

dx2G(x̄ ′′, x̄; E)∂x1 G(x̄, x̄ ′; E)

}

= Im

{
G∗(x̄ ′, x̄ ′′)

∫
dx2G∗

0(x̄, x̄ ′)∂x1 G∗
0(x̄, x̄ ′′)

+ G(x̄ ′, x̄ ′′)
∫

dx2G0(x̄, x̄ ′′)∂x1 G0(x̄, x̄ ′)
}

+
∫

dȳ Im

{
G∗(x̄ ′, x̄ ′′)V (ȳ)G∗(ȳ, x̄ ′′)

×
∫

dx2G∗
0(x̄, x̄ ′)∂x1 G∗

0(x̄, ȳ)

+ G(x̄ ′, x̄ ′′)V (ȳ)G(ȳ, x̄ ′′)
∫

dx2G0(x̄, ȳ)∂x1 G0(x̄, x̄ ′)
}

+
∫

dz̄ Im

{
G∗(x̄ ′, x̄ ′′)G∗(z̄, x̄ ′)V (z̄)

×
∫

dx2G∗
0(x̄, z̄)∂x1 G∗

0(x̄, x̄ ′′)

+ G(x̄ ′, x̄ ′′)V (z̄)G(z̄, x̄ ′)
∫

dx2G0(x̄, x̄ ′′)∂x1 G0(x̄, z̄)

}

+
∫

dz̄
∫

dȳ Im

{
G∗(x̄ ′, x̄ ′′){V (ȳ)G∗(ȳ, x̄ ′)V (z̄)G∗

× (z̄, x̄ ′′)}
∫

dx2G∗
0(x̄, ȳ)∂x1 G∗

0(x̄, z̄)

+ G(x̄ ′, x̄ ′′){V (ȳ)G(ȳ, x̄ ′′)V (z̄)G(z̄, x̄ ′)}
×

∫
dx2G0(x̄, ȳ)∂x1 G0(x̄, z̄)

}
. (22)

All four terms on the right-hand side of the expression
above involve integrals of the form F × IGG(x1, x̄ ′, x̄ ′′) in
equation (B.11) in appendix B, the function F being different
in each term. Using the properties of the integral in the
appendix we see easily that the last two terms would vanish for
x1 outside the interaction region. In fact if the observation point
|x1| → ∞, which would guarantee |x1| > |x ′

1|, by the same
argument the first two terms would be zero as well. However
since the variable x ′

1 is not associated with any interaction
factor V , in principle it is not bounded and we have to allow
for |x1| < |x ′

1|; in this case equation (B.12) implies that for
observation points outside the interaction region |x1| > |x ′′

1 |
we can reduce the first two terms on the right-hand side (which
provide the only non-vanishing contributions) to

2
m

h̄2 {θ(x ′
1 − x1)θ(x1 − x ′′

1 )− θ(x ′′
1 − x1)θ(x1 − x ′

1)}

× Im

[
G(x̄ ′, x̄ ′′)

{
G0(x̄

′, x̄ ′′)

5
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+
∫

dȳG0(x̄
′, ȳ)V (ȳ)G(ȳ, x̄ ′′)

}]

= 2
m

h̄2 Im[G(x̄ ′, x̄ ′′)G(x̄ ′, x̄ ′′)]
× {θ(x ′

1 − x1)θ(x1)− θ(−x1)θ(x1 − x ′
1)}. (23)

Inserting this into the second line of the expression for J1b in
equation (21) and using the identity in equation (14), we get
the following:

J1b = 1

π

∂

∂t

∫
dx̄ ′{θ(x ′

1 − x1)θ(x1)− θ(−x1)θ(x1 − x ′
1)}

×
∫

dE f (E) Im {G(�x ′, �x ′; E)}

= − ∂

∂t

∫
dx̄ ′ρ(x̄ ′){θ(x ′

1 − x1)θ(x1)− θ(−x1)θ(x1 − x ′
1)}.
(24)

In the last step we use the definition of the instantaneous
two-dimensional density of states 1

π
Im {G(x̄ ′, x̄ ′; E)} =

−ρ(x̄ ′, E) and take the integral over energy to get the local
density ρ(x̄ ′). As we see, this is a total time derivative that
would vanish on integrating over a full period. In any case
for an observation point |x ′| � 0, even without taking the
time integral, this term can be made negligible, and actually, in
the single-particle picture used to describe charge pumping, the
equivalent of this term is identically zero since the observation
point is taken to be asymptotically far from the region of
interaction. Thus we can now write a compact expression for
the net contribution to the adiabatic pumped singlet current to
first order for periodically varying two-particle interaction,

J1(t) = eh̄2

2πm

∫
dE f (E)

∂

∂E

×
[∫

dx̄ ′V̇ (x̄ ′)
∫

dx2Im{G∗(x̄ ′, x̄; E)∂x1 G(x̄, x̄ ′; E)}
]
.

(25)

4. Validity for the non-interacting case: charge
pumping

Our result has the advantage that it also describes adiabatic
quantum pumping where the independent particle description
is assumed. We simply interpret the functions as single-
particle objects, i.e. the Green functions are single-particle
Green functions, G(x̄ ′, x̄ ′′; E) → g(x ′, x ′′; E), and we then
do not have the integral over x2, so that

J (t) = eh̄2

2πm

∫
dE f (E)

∂

∂E

×
[∫

dx ′V̇ (x ′) Im{g∗(x ′, x; E)∂x g(x, x ′; E)}
]

(26)

Noting that the single-particle Green function has the
asymptotic form

g(x, x ′′; E) = m

ikh̄2 eikxψ∗(x ′) (27)

where k =
√

2m E/h̄2, one obtains

J (x, t) = em

2π h̄2

∫
dE f (E)

∂

∂E

{
1

k
〈ψ|V̇ |ψ〉

}
(28)

Figure 2. (a) A discrete model for a singlet pump comprising a chain
of quantum dots where the interaction between a singlet pair is
non-vanishing only when both particles are together at one of the two
shaded dots. (b) The continuum version of the same model where the
pair interaction is non-zero only at the two points x = ±a indicated
by spikes. The strengths of the two-particle interaction at the two
sites are U±(t), which are the time-varying parameters. At any
instant the two parameters can be of different magnitudes, indicated
by different shades in the discrete model and different heights of the
spikes in the continuum model (the short dotted line is simply a
marker for the origin x = 0).

which agrees with the expression in [16] on noting that in that
paper the states are normalized by

√
k. That expression in turn

has been shown to be equivalent to the Brouwer formula [9].

5. Physical model for a singlet pump: a lattice of
quantum dots

In theoretical studies of quantum pumping, a turnstile model
[15] has been used, wherein delta function potentials exist
at two points in a 1D system. The cyclic variation of
the strength of the potentials serves as the pumping cycle.
The region between the two spikes can be interpreted as a
scattering region, such as a quantum dot, and the strength
of the potentials a measure of the barriers segregating the
scattering region from the rest of the system (e.g. the
leads). We can adapt the turnstile model, proposing a singlet
pump in which delta function external potentials acting at the
two points are replaced with the electron–electron interaction
acting only at those points. In a continuum of positions, this
model of extremely localized interactions seems somewhat
unrealistic. However, in a 1D tight-binding lattice, we would
have interactions at two lattice sites, which seems physically
reasonable and appropriate for the application of our results.
Physically, such a lattice model could be implemented, for
instance, by a chain of quantum dots where precise voltage
controls produce only time-varying interaction between the
members of an electron pair when both particles occupy one of
two specific dots. A schematic diagram of the model is shown
in figure 2.

Formally, the expressions in the discrete case are identical
with those of the continuum case, as we have verified
explicitly [10]: the Green functions in the continuum case need
only be reinterpreted as discrete Green functions and spatial
integrals need only be replaced by spatial sums. Since the
general derivation in this paper has been in a continuum model,
we will derive the results for the turnstile model also in a
continuum form.

6
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The interaction is

V (x̄, t) = U−(t)δ(x̄ + ā)+ U+(t)δ(x̄ − ā) (29)

where ±ā ≡ ±{a, a}. The strength of the delta functions
U− and U+ are the two time-dependent pumping parameters.
The instantaneous pumped singlet current in equation (25) then
becomes

JS(t) = eh̄2

2πm

∫
dE f (E)

∑
ȳ=±ā

U̇±(t)∂E

× Im

[∫
dx2G∗(x̄, ȳ)∂x1 G(x̄, ȳ)

]
. (30)

The full instantaneous Green function for this system can be
written compactly as

G(x̄, ȳ) = G0(x̄, ȳ)+ F−(ȳ)G0(x̄,−ā)+ F+(ȳ)G0(x̄, ā)

with the coefficients being

F±(ȳ) =
[

T±G0(±ā, ȳ)+ T±T∓G0(2ā)G0(∓ā, ȳ)

1 − T∓T±G0(2ā)G0(2ā)

]
. (31)

We have introduced the T -matrix for a single Hubbard
interaction (a single term in equation (29)),

T±(t) = [U−1
± (t)+ G0(0)]−1. (32)

We have also introduced a shorthand for the free Green
functions: since the free Green functions depend only on the
absolute difference of the coordinates, G0(x̄, ȳ) = G0(|x̄− ȳ|),
we define G0(2ā) = G0(ā,−ā) = G0(−ā, ā) and G0(0) =
G0(ā, ā) = G0(−ā,−ā). Using the expansion equation (31)
we can evaluate the coordinate integrals in equation (30) to be

h̄2

m

∫
dx2G∗(x̄,±ā)

∂

∂x1

G(x̄,±ā)

= − Im {G0(0)}
[
1 + [F±(�a)+ F∗

±(�a)]
+ |F∓(�a)|2 + |F∓(�a)|2

]
− Im {F∓(�a)G0R(2a)− F∗

∓(�a)G∗
0R(2a)}

− Im{F∗
±(�a)F∓(�a)G0R(2a)− F∗

∓(�a)F±(�a)G∗
0R(2a)}.

(33)

In order to obtain this form we used the expansion
equation (31) above to reduce the above integral to a sum
of integrals of the form shown in equations (B.1) and (B.4)
considered in appendix B. Then we used their respective
evaluated forms given in equations (B.5) and (B.6). What is
noteworthy is that the expressions depend on G0R(2a), the
regular part of the two-particle Green function, which has no
singularity. This is discussed in the appendix in equation (A.5)
After carrying through a lengthy but straightforward set of
algebraic manipulations of the above expression, we insert the
result into equation (30) to get the following expression for the
singlets pumped in a single cycle of period τ :

QS(τ ) = −e

2π

∫ τ

0
dt

∫
dE f (E)

∂

∂E

∑
±

U̇±(t)

× |T±(t)|2
[
Im{G0(0)}(1 + |T∓(t)G0(2ā)|2)

± 2 Im{T∓(t)G0(2ā)G±
0R(2ā)}]

× {
U±(t)2|1 − T∓(t)T±(t)G0(2ā)G0(2ā)|2}−1

(34)

Figure 3. (a) Schematic diagram of the quantum dot used in [32]
and [33]. Here V is the potential energy at the top gate. (b) Our
proposed modification of that structure with two concentric metal
gates, with independently controllable voltages; Vin is the net
potential energy of an electron at the top edge of the blocking barrier
(Vin = −e ×�in, where�in is the voltage) right below the inner gate
(darker shade). Likewise, Vout is the potential energy of an electron at
the base of the outer gate (lighter shade).

where G+
0R(2ā) = G0R(2ā) and G−

0R(2ā) = G∗
0R(2ā). Thus in

order to evaluate the current we only need to evaluate the free
two-particle lattice Green function, for only two specific ar-
guments G0(0) = G0(ā, ā; E) and G0(2ā) = G0(ā,−ā; E).
Exact analytical forms exist for the lattice Green functions, G0,
in terms of elliptic integrals [31].

As mentioned above the expression for the discrete lattice
is identical to this with the replacement of the Green functions
by their discrete equivalents G0(0) → G0(m̄, m̄; E) and
G0(2ā) → G0(m̄,−m̄; E), where ±m correspond to the
lattice sites where the time-varying interaction occurs. In
figure 2(a), we take m = 1. The effect of changing the value
of m on the number of singlet pairs pumped per cycle was
presented in an earlier paper [10].

6. Characteristics of a quantum dot for time-varying
interaction

While the physical model comprising of a chain of quantum
dots as presented above yields a measurable singlet current
in theory, the actual experimental implementation requires a
feasibility study involving realistic quantum dots. We will
now suggest a specific configuration for an experimentally
realizable quantum dot to tailor it for singlet pumping. In
the rest of the paper, we will establish that the characteristics
of our proposed configuration will allow the variation and
manipulations to satisfy the requirements of a singlet pump.

To maintain close contact with experiments, we specif-
ically consider a cylindrically symmetric GaAs/AlxGa1−xAs
quantum dot used in experiments reported in [32]. To adapt
the dot for singlet pumping, we propose a single modification:
instead of being one single disk, the top gate needs to be made
of an inner disk of radius Rin and a concentric outer annulus
with inner and outer radii Rin and Rout, so that the voltages
Vin and Vout on the two pieces can be controlled independently.

7
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Figure 4. Potential energy of an electron in the structure depicted in
figure 3(b), without the 0.22 eV offsets due to the AlGaAs layers.

(This figure is in colour only in the electronic version)

This provides two independent parameters for manipulating the
shape and depth of the lateral potential. A schematic cut-away
view is shown in figure 3, in the original experiment (a) and
with our proposed modification (b).

Along the direction of the z-axis (figure 3), electron
confinement is provided by the difference in conduction band
edge energies between GaAs and Alx Ga1−x As. The result
is a quantum well of width 17.5 nm in the middle GaAs
layer. Lateral confinement within this GaAs layer is due to
the inhomogeneous electric potential generated by the top gate.
In the original set-up a 30 nm thick GaAs cylindrical cap
over the center of the dot created that inhomogeneity, while
in our modified version the different voltages on the inner and
outer discs both play a role in the lateral confinement. The
inhomogeneity is such that the potential energy of an electron
V (= − e × � where � is the gate voltage) is lower near the
axis of the dot so that electrons are attracted to the region under
the inner disc or cap.

We determine the potential profile within the dot by
numerically solving the Poisson equation

(∇2
R+∂2

z )V =
⎧⎨
⎩

0 0 nm < z < 105 nm

(−e)× − nDe

K ε0
105 nm < z < 140 nm

(35)
applying the methods and parameters used in [33] to match
experimental observed capacitance spectroscopy peaks of [32].
Here, z is measured from the top of the substrate, so that
the region 105 nm < z < 140 nm is the charged blocking
barrier. In the Poisson equation, K = 12.85 is the dielectric
constant for undoped GaAs, and the charge density in the
blocking barrier is taken to be nD = 4.62 × 1017 cm−3. We
take the Fermi energy of the bottom electrode as the energy
reference, and specify Vin and Vout at the top surface of the
cylinder. Thus, at z = 140 nm, Vin is taken to be a positive
constant potential energy in the inner disk of radius Rin and
Vout is a positive constant potential energy on the outer disc
between Rin and Rout (to create electron confinement we must
have Vin < Vout). The potentials are defined to be those at
the edge of the blocking barrier, z = 140 nm, so that Vin

Figure 5. Radial and axial profiles of the potential along lines
passing through the center of the quantum dot obtained from the
solution of the Poisson equation for the structure depicted in
figure 3(b). (a) Axial (z) profile along the cylinder axes (R = 0)
including the 0.22 eV band offset. (b) Radial profile at z = 90 nm
where the potential is the lowest; the black dots correspond to the
solution of the Poisson equation, and the continuous line is the
parabolic fit.

and Vout include the Schottky potential of about 0.65 eV at
the metal gate semiconductor interface, as well as the drop
due to the GaAs cap under the inner disk. The boundary
condition on the curved outer surface of the cylindrical dot is
set by assuming a large value of Rout, so that the electric field
is essentially parallel to the curved surface and aligned along
the z-direction. We solve the 1D Poisson equation in the z-
direction to determine the potential profile on this outer surface
at r = Rout

V (Rout, z) =

⎧⎪⎨
⎪⎩

B1z + B2 z < 105 nm

+nDe2

K ε0

z2

2
+ A1z + A2 z > 105 nm.

(36)
Applying the boundary conditions at the top (V = Vout) and
bottom surface (V = 0) and matching solutions at the bottom
edge of the blocking barrier layer at z = 105 nm determines
the constants A1 = (Vout − 9.9684)/140 eV nm−1, B1 =
(Vout − 0.3987)/140 eV nm−1, A2 = 3.5886 eV, and B2 = 0.

With the value of the potential on the boundary
determined, the full 2D Poisson equation in r, z is solved using
FISHPACK FORTRAN routines for the solution of separable
elliptic partial differential equations [34]. Figure 4 plots the
shape of the potential without the 0.22 eV conduction band
offset of the AlGaAs; we took Rin = 120 nm and Rout =
400 nm. Figure 5(a) shows the computed z-profile along the
cylinder axis at R = 0 nm now with the 0.22 eV AlGaAs offset
included; this shows that the region where electrons are trapped
resembles a finite square well along the z-axis. Figure 5(b)
shows the computed profile, in the middle of the finite square
well (z = 90 nm), in the radial direction. The solid line is a
parabolic fit, which shows clearly that in the radial direction
the trapped electrons feel a harmonic oscillator potential.

7. An electron pair in the modified quantum dot

The problem of two electrons in a quantum dot has been
analyzed in detail in the literature. As we see from figure 5, the

8
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potential in our quantum dot is well approximated by a finite
square well in the z-direction and a harmonic oscillator in the
radial direction. The effective Hamiltonian operator for two
electrons is then

Ĥ = − h̄2

2m∗
[∇2

r1 + ∂2
z1 + ∇2

r2 + ∂2
z2

] + Vsq.well

+ e2/4πε0 K

(r1 − r2)2 + (z1 − z2)2
+ 1

2
m∗ω2(r 2

1 + r 2
2 ). (37)

In the numerical estimates that follow, we neglect the z-
dependence in the Coulomb interaction in order to separate
the radial and axial directions in the Schrödinger equation.
Quantitatively, the neglect of this term in the denominator
of the Coulomb interaction will cause a slight overestimate
of the Coulomb interaction energy, an effect that can be
diminished if the dot is significantly narrower along the z-
axis than in the radial direction. However, qualitatively this
approximation makes no difference for the demonstration of
quantum pumping feasibility.

The total energy of an electron in the dot can now be
separated into two parts E = Ez + ER, an axial quantum
well energy EZ which is well approximated by a finite square
well and a transverse energy ER that can be well approximated
using a harmonic oscillator.

7.1. Axial energy, Ez

The size of the quantum well is L = 17.5 nm and the height
is given by U = |U0| + 0.22 eV, where 0.22 eV is the band
offset between GaAs and AlxGa1−xAs and U0 is the depth
of the well below the Fermi energy of the bottom lead, our
reference energy. For an infinite well of the same width we
get E∞

z = 2h̄2

m∗ L2 × ( π2 )
2 = 18.31 meV, taking m∗ = 0.067m

for undoped GaAs. For a finite square well, the ground state
energy is determined by

Ez = 2h̄2x2

m∗L2
= (7.43 meV)×x2; x tan(x) =

√
P2 − x2

with P2 = 134.8 × U (in eV) where U is the well depth.
We found that as U varies over the range (0.22, 0.26) eV Ez

remains in the range (13.0, 13.4) meV. Since it turns out that
U0 changes by less than 0.01 eV when we vary the parameters
Vout and Vin, the value of EZ , which is defined relative to the
bottom of the well, changes by less than ∼1%. Therefore, in
our calculations, the variation of EZ relative to the bottom of
the well can be neglected. As figure 5(a) shows, the bottom
of the well is not completely flat, varying from 0.22 eV to
|U0| + 0.22 eV. However, for the same reason, this slope has
little effect on the constancy of EZ .

7.2. Radial energy, ER

The transverse or radial Hamiltonian can be separated into
center-of-mass (R) and relative coordinates (r) [35]

Hcom = −1

2
∇2

R + 1

2
γ 2 R2; Hrel = −2∇2

r + 1

8
γ 2r 2 + 2

r
(38)

where energies are scaled in Rydbergs RD = h̄2

2m∗a2
D

and the

length scale is aD = h̄2(4πε0 K )/(m∗e2) and γ = 2(aD/ l0)
2,

where l0 = √
h̄/m∗ω is the oscillator length. In these units,

the harmonic oscillator energy spacing, h̄ω, is given by RDγ .
Excluding the Coulomb interaction, the solutions are those for
a two-dimensional harmonic oscillator with circular symmetry
with energy

ER − Eint = (2N + 1 + |M|)γ + (2n + 1 + |m|)γ . (39)

The parity of the spatial wavefunction is determined by the
relative coordinate quantum number m. For m = 0, the spatial
wavefunction is even under particle change (r → −r ), so
the state must have an antisymmetric spin wavefunction, a
singlet. For m = 1 the spatial wavefunction is odd under
particle interchange, so the state must have a symmetric spin
wavefunction, a triplet. We conclude that the lowest energy
states are the singlet with (N,M, n,m) = (0, 0, 0, 0) and the
triplet with (N,M, n,m) = (0, 0, 0, 1). These have energies
2h̄ω and 3h̄ω respectively without including the Coulomb
interaction energy Eint.

The interaction energy Eint has been calculated for 2D
circular quantum wells in the literature [35, 36] for values of
γ ∼ 0.1–1. We use the results for Eint to determine the total
radial energy ER .

8. Experimental feasibility of pumping entangled
electrons

8.1. Desired scenario for singlet pumping

We would like to vary the top gate potential energies Vin and
Vout in such a way that the shape of the lateral confining
potential changes with the following constraints:

(i) At all times, the singlet state is energetically accessible,
but the triplet state is too high in energy to be occupied.

(ii) The energy of a single electron in the dot with respect to
the Fermi energy EF = 0 of the bottom electrode stays
constant and far off resonance with EF. This suppresses
single-electron tunneling, which depends strongly on
including the resonant region in the pumping cycle [15].

(iii) There is significant variation of the Coulomb interaction
between the two electrons: the singlet energy can be varied
appreciably to permit pumping of pairs.

We present numerically computed results for two sample
configurations of the dot corresponding to different specific
values of the top gate potential energies Vin and Vout which
satisfy the above criteria. These two configurations could serve
as points within a cyclic variation of the top gate potential
energies.

The lowest energy state spin singlet (with quantum
numbers (N,M, n,m) = (0, 0, 0, 0)) and spin triplet (with
quantum numbers (N,M, n,m) = (0, 0, 0, 1)) have total
energies

1s: E (S)(ω) = 2U0 + 2Ez + 2h̄ω + E (S)
int (ω)

2p: E (T)(ω) = 2U0 + 2Ez + 3h̄ω + E (T)
int (ω).

(40)
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Table 1. Summary of numerically computed parameters for two specific configurations of the potential profile of the proposed quantum dot,
that would satisfy the requirements of singlet pumping. The two configurations would be part of a continuous and cyclic variation of the
potential profile of the dot.

Configuration 1 Configuration 2

Vout 1158.1 meV 950.6 meV
Vin 263.1 meV 301.2 meV
l0 = √

h̄/m∗ω 14.35 nm 15.55 nm
h̄ω 5.5 meV 4.7 meV
U0 −22.9 meV −22.1 meV
EZ 13.2 meV 13.2 meV

Single-electron level U0 + EZ + h̄ω −4.2 meV −4.2 meV
Singlet interaction energy E (S)

int 7.3 meV 6.6 meV

Triplet interaction energy E (T)
int 4.6 meV 4.2 meV

E (T)
int − E (S)

int −2.7 meV −2.4 meV

Radial singlet energy E (S)
R 18.4 meV 16.0 meV

Radial triplet energy E (T)
R 21.2 meV 18.3 meV

E (T)
R − E (S)

R 2.8 meV 2.3 meV

Total singlet energy 2U0 + 2Ez + E (S)
R −0.5 meV −0.9 meV

Total triplet energy 2U0 + 2Ez + E (T)
R +0.9 meV +0.25 meV

In order to satisfy condition (i) we look for values of ω such
that the total triplet energy lies above the Fermi level, i.e. the
reference energy in our calculations, while the E (S) lies below:

E (S)(ω) < 0 E (T)(ω) > 0. (41)

In order to satisfy condition (ii) to maintain the single-particle
energy levels fixed with respect to the Fermi level, we have to
simultaneously ensure that in any two configurations (1 and 2)
we have

h̄ω1 + U (1)
0 + Ez = h̄ω2 + U (2)

0 + Ez,

⇒ h̄ω1 − h̄ω2 = U (2)
0 − U (1)

0 . (42)

8.2. Experimental parameters for singlet pumping

We take the dimensions of our quantum dot to be similar to
those of [32], except that our dot has a slightly smaller radius
of 120 nm for the inner top gate while estimates [33] found
that in the experiment the radius of the GaAs cap was about
200 nm.

We explicitly identify two sample locations in parameter
space that satisfy all of our conditions. (To find a complete
pumping path through parameter space is straightforward since
one has two parameters Vout and Vin and only one precise
quantitative constraint, (ii) above). Say the two sample
locations have radial oscillator energies h̄ω = 5.5 meV and
h̄ω = 4.7 eV (corresponding to γ = 1 and γ = 0.85
respectively). Then the well depths must compensate such
that the single-electron energy (42) remains constant. For
example, the locations could satisfy U0 = −22.9 meV and
U0 = −22.1 meV so that the single-electron energy is held
at −4.2 meV, constant and strongly off resonance with the
Fermi energy. At these values of h̄ω and U0, the quantum
dot geometry is such that the interaction energies [35] are for
singlets 7.3 meV and 6.6 meV respectively and for triplets
4.6 meV and 4.2 meV respectively. Then equation (40) implies

Figure 6. (a) Radial profiles through the lowest potential region of
the dot for two distinct sets of top gate potential energies: continuous
line → (Vout, Vin) = (1158.1 meV, 263.1 meV) and dotted line
→ (Vout, Vin) = (950.6 meV, 301.2 meV). They correspond to the
two configurations described in table 1. (b) Expanded view of the
lowest energy region. The shift U0 between the two configurations is
h̄ω1 − h̄ω2, keeping the single-particle ground state energy
unchanged.

that the total energies for the singlets are −0.5 meV and
−0.9 meV for the two locations in parameter space, while
the total energies of the triplets are 0.9 meV and 0.25 meV
respectively. Thus, the singlet states are energetically
accessible while the triplet states are not.

Our simulation shows that the two configurations are
realized in the dot at (Vout, Vin) = (1158.1 meV, 263.1 meV)
and (Vout, Vin) = (950.6 meV, 301.2 meV), from our
numerical computation, which can be rounded off to the
appropriate significant figures. Figure 6(a) shows the radial
profile in the dot for the two configurations. Configuration
1 has a higher difference between Vin and Vout, leading to
a larger value of ω and causing tighter lateral confinement.
Configuration 2 has a lower difference between Vin and Vout,
leading to a smaller value of ω. However, because Vin is
higher than in configuration 1, the well is not as deep. This
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can be clearly seen in figure 6(b), where the profiles for the
two configurations cross due to the compensating effects of
increased ω and lowered U0.

Table 1 summarizes the results of our simulation.
Energetically the singlets are accessible in both configurations,
while triplets are inaccessible (point (i) above). The energy
of the single-electron level in the dot is fixed at −4.2 meV,
significantly off-resonant with EF = 0 (point (ii) above). The
variation of the Coulomb interaction is about 11% between the
two singlet configurations (point (iii) above).

9. Conclusions

In this paper we address several issues related to developing
a quantum singlet pump. We will conclude by providing a
summary of our main results. We have considered the problem
of applying the mechanism of adiabatic quantum pumping to
generate a flow of singlet pairs of electrons, while suppressing
the flow of triplets and uncorrelated single particles. The first
challenge was to find the appropriate theoretical description.
We first identified an appropriate definition of the current
for singlet pairs in analogy with the current of a stream
of uncorrelated electrons, by using the reduced two-particle
density matrix. We then showed how in the presence of two-
body interactions the evolution of the many electron system
can be effectively described by the evolution of a two-particle
state, particularly when the interaction is spatially localized.
We confirmed that our definition of current gives a zero current
in the absence of bias or time variation. We then wrote
an adiabatic perturbation expansion for the time-varying two-
particle states, where the rate of change of the interaction
∂V/∂ t is assumed to be slow compared to the timescale of the
dwell time of the particles in the interaction region. Using the
assumption of adiabaticity, we computed the pumped current to
first order in the time derivative (or equivalently the frequency
of the time-varying interaction). The interaction is assumed
to affect only singlets and is non-vanishing only in a finite
region, but otherwise completely general. By using several
identities and relations for the two-particle Green function, that
we present in the appendices, we reduced the expression for the
current to a compact and relatively simple form involving only
the instantaneous two-particle Green functions. The current
is seen to have an additional transient term, which we show
vanishes identically for a complete cycle, the term being a total
time derivative.

Having established a general but simple expression for
the pumped singlet current due to the action of a time-
varying local two-body interaction, we apply it to a specific
model. We consider a lattice where the interaction acts
and varies in time only at two of the sites; the interaction
acts only when both particles are localized on the same site,
while the two sites are sufficiently separated that interaction
of an electron at one site with one at the other can be
neglected. If the sites are well localized in space, the effect
of the interaction on triplets is automatically suppressed due
to vanishing or at least substantial suppression of the triplet
spatial wavefunction at each of the two sites due to the
Pauli principle. We computed the singlet current for the

model as an exact analytical expression, which has been
confirmed to have the same form for discrete and continuous
models.

Finally, we show that this model can be implemented
using a chain of quantum dots. We take the design
specifications of a quantum dot that had been fabricated
and studied in the laboratory and propose one minor
modification that would introduce two concentric top gates
with independently controllable voltages, something that can
be achieved without much difficulty with the methods of
fabrication available currently. We computed the potential
profile of such a dot with available experimental parameters
and computed the energy of two electrons in such a dot. We
showed that by varying the two gate voltages (i) significant
singlet current can be generated, (ii) triplets can be made
energetically inaccessible for states in the dot, and therefore
affected much less by the variation of the interaction, and
(iii) the single-particle states can be maintained at the same
energy and far off resonance, thereby suppressing current of
uncorrelated single electrons. Thus in effect such a dot can
be used in a chain to implement our model for generation of a
measurable singlet current.
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Appendix A. Green functions: representations and
identities

The Green function for the potential-free time-independent
Schrödinger equation is defined by

[
E + h̄2

2m
∇2

]
G0(x̄

′, x̄ ′′; E) = δ(x̄ ′ − x̄ ′′) (A.1)

where x̄ ≡ {x1, x2, . . . , xn} denotes the spatial degrees of
freedom, the total energy E shared among them is assumed
to be real, and the subscript in G0 indicates the absence
of any potential. The degrees of freedom have equivalent
interpretations as n spatial dimensions or as coordinates of n
individual particles in one dimension. We study interacting
particles in 1D, but we use ‘n-particle’ or ‘nD’ interchangeably
in referring to the Green functions. The retarded and advanced
Green functions will be denoted using superscripts G+ and
G−. When the Green functions obey G+

0 (x̄
′, x̄ ′′; E) =

[G−
0 (x̄

′, x̄ ′′; E)]∗, we leave out the superscripts, G+ ≡ G and
G− ≡ G∗.

Our interest being in two-body interactions we only
need single-particle (or 1D) and two-particle (or 2D) Green
functions. The uppercase G(x̄ ′, x̄ ′′; E) will be reserved for the
2D Green function with x̄ ≡ {x1, x2}, and 1D Green functions
will be distinguished by using lowercase g0(x, x ′; E). Single-
particle eigenstates are likewise denoted by lowercase φk(x);
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expansion in such eigenstates readily establishes the following
useful identities:∫ ∞

−∞
dxφ∗

k (x)g0(x, x ′; E) = φ∗
k (x

′)
E − Ek + iη∫ ∞

−∞
dε

g0(x ′, x ′′; E − ε)

ε − E p + iη
= −2iπg0(x

′, x ′′; E − E p)

∫ ∞

−∞
dε

g0(x ′, x ′′; E − ε)

ε − E p − iη
= 0

∫ ∞

−∞
dxg∗

0(x, x ′; E1)g0(x, x ′′; E2)

= g∗
0(x

′′, x ′; E1)− g0(x ′, x ′′; E2)

E2 − E1 + iη∫ ∞

−∞
dxg0(x, x ′; E1)g0(x, x ′′; E2)

= g0(x ′′, x ′; E1)− g0(x ′, x ′′; E2)

E2 − E1

E2→E1→

− ∂

∂E1

g(x ′, x ′′; E1).

(A.2)

For scattering problems the appropriate eigenstates are
plane waves which in 1D are φk(x) = eikx ; they provide a
coordinate representation for the free 1D Green function for
real energies E

g±
0 (x

′, x ′′; E) =
∫ ∞

−∞
dk

2π

eik(x′−x′′)

E − (h̄2k2/2m)± iη

= ∓ iθ(E)e
±i

√
2m
h̄2 E|x′−x′′ |

h̄2

m

√
2m E/h̄2

− θ(−E)e
−

√
2m
h̄2 |E ||x′−x′′ |

h̄2

m

√
2m|E |/h̄2

. (A.3)

The difference of the retarded and the advanced Green
functions gives the two-point correlation function

ρ(x ′, x ′′; E) = 1

−2π i

[
g+

0 (x
′, x ′′; E)− g−

0 (x
′′, x ′; E)

]

= θ(E)
∫ ∞

−∞
dk

2π
δ(E − (h̄2k2/2m))eik(x′−x′′ ). (A.4)

Performing the momentum integral demonstrates consistency
with the definition of g±

0 . In the case of equal coordinate
arguments a different contour integral is involved, but the
end result agrees with simply setting x ′ = x ′′ in the above
expressions; ρ(x ′, x ′; E) defines the one-dimensional density
of states.

The 2D free Green function can be written in terms of the
1D Green functions

G±
0 (x̄

′x̄ ′′; E) = ±i

2π

∫ ∞

−∞
dεg±

0 (x
′
1, x ′′

1 ; E − ε)g±
0 (x

′
2, x ′′

2 ; ε)

Using an eigenfunction expansion in Cartesian coordinates and
integrating out one momentum component gives

G±
0 (x̄

′x̄ ′′; E)

= ∓ i
∫ √

2mE
h̄2

0

dk

2π

2 cos[k(x ′
2 − x ′′

2 )]e±i
√

2mE/h̄2−k2 |x′
1−x′′

1 |
h̄2

m

√
2m E/h̄2 − k2

−
∫ ∞

√
2mE
h̄2

dk

2π

2 cos[k(x ′
2 − x ′′

2 )]e−
√

k2−2mE/h̄2|x′
1−x′′

1 |
h̄2

m

√
k2 − 2m E/h̄2

. (A.5)

The first term has both real and imaginary parts and is always
regular (R) as a function of the coordinate arguments, while the
second term is always real and is singular (S) when x̄ ′ = x̄ ′′;
so we name the two terms G±

0R(x̄
′ x̄ ′′; E) and G±

0S(x̄
′ x̄ ′′; E)

respectively.

Appendix B. Integrals used in computing current

We will apply the results of the preceding appendix to evaluate
the generic expressions involving two-particle or 2D Green
functions required in computing current. The 2D Green
functions below are at energy E , not explicitly shown for the
sake of compact notation.

Appendix B.1. Integral with conjugate Green functions

We encounter expressions involving a pair of conjugate 2D
Green functions when computing the current:

IG∗G(x̄
′, x̄ ′′) =

∫ ∞

−∞
dx2G∗

0(x̄, x̄ ′)
∂

∂x1
G0(x̄, x̄ ′′) (B.1)

By expressing the 2D Green functions above in terms of 1D
Green functions as in equation (A.5), and then using the
identities in equation (A.2), we can reduce it to the form

IG∗G(x1, x̄ ′, x̄ ′′) = i

2π

∫ ∞

−∞
dε[g(x ′

2, x ′′
2 ; ε)− g∗(x ′

2, x ′′
2 ; ε)]

× g∗(x1, x ′
1; E − ε)

∂

∂x1
g(x1, x ′′

1 ; E − ε). (B.2)

Inserting the expressions for 1D Green functions from
equations (A.3) and (A.4) leads to an explicit functional form
that is piecewise continuous, in which the free variable x1

determines the boundaries of continuity; thus for the exterior
region |x1| > |x ′

1|, |x ′′
1 |, which is relevant to us, the expression

is

IG∗G(x1, x̄ ′, x̄ ′′)

= ±
⎡
⎣i

∫ √
2mE
h̄2

0

dk

2π

2 cos[k(x ′
2 − x ′′

2 )]e±i
√

2m
h̄2 E−k2(x′

1−x′′
1 )

h̄4

m2

√
2m E/h̄2 − k2

−
∫ ∞

√
2mE
h̄2

dk

2π

2 cos[k(x ′
2 − x ′′

2 )]e−
√

k2− 2m
h̄2 E |2x1−(x′

1+x′′
1 )|

h̄4

m2

√
k2 − 2m E/h̄2

⎤
⎦

(B.3)

where the + sign applies for x1 > x ′
1, x ′′

1 and the − sign for
x1 < x ′

1, x ′′
1 . We can exploit the similarity of this expression

with G±
0 (x̄

′x̄ ′′) in equation (A.5) because we always encounter
it in the functional combination

F × IG∗G(x1, x̄ ′, x̄ ′′)

= Im

{
F

∫ ∞

−∞
dx2G∗

0(x̄, x̄ ′)
∂

∂x1
G0(x̄, x̄ ′′)

+ F∗
∫ ∞

−∞
dx2G∗

0(x̄, x̄ ′′)
∂

∂x1
G0(x̄, x̄ ′)

}
(B.4)

where F is a complex-valued function and x̄ ′ ↔ x̄ ′′
are exchanged between the two terms; the second term in
equation (B.3), being (i) manifestly real and (ii) unaffected by
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the exchange x̄ ′ ↔ x̄ ′′, would not contribute to equation (B.4).
Therefore, in this particular combination the integrals can be
replaced by G±

0R(x̄
′x̄ ′′). We need to note that the exponential

in equation (A.5) contains the absolute difference of the
coordinate arguments while equation (B.3) does not; this in
effect determines the choice of G±

0R depending on whether
x ′ > x ′′ or x ′ < x ′′:
For x1 > x ′

1, x ′′
1 , F × IG∗G(x̄

′, x̄ ′′)

= m

h̄2 Im
{−[FG0R(x̄

′, x̄ ′′)− F∗G∗
0R(x̄

′, x̄ ′′)]θ(x ′
1 − x ′′

1 )

+ [FG∗
0R(x̄

′, x̄ ′′)− F∗G0R(x̄
′, x̄ ′′)]θ(x ′′

1 − x ′
1)

}
For x1 < x ′

1, x ′′
1 , F × IG∗G(x̄

′, x̄ ′′)

= m

h̄2 Im
{−[FG∗

0R(x̄
′, x̄ ′′)− F∗G0R(x̄

′, x̄ ′′)]θ(x ′
1 − x ′′

1 )]

+ [FG0R(x̄
′, x̄ ′′)− F∗G∗

0R(x̄
′, x̄ ′′)]θ(x ′′

1 − x ′
1)

}
.

(B.5)

It is also useful to note that the imaginary part satisfies

Im
{

IG∗G(x̄
′, x̄ ′′)

} =

⎧⎪⎨
⎪⎩

− m

h̄2
Im {G0(x̄

′, x̄ ′′)} x1 > x ′
1, x ′′

1

+ m

h̄2
Im {G0(x̄

′, x̄ ′′)} x1 < x ′
1, x ′′

1

which helps simplify the case x̄ ′ = x̄ ′′, when the first terms in
both equations (B.3) and (A.5) become imaginary

F × IG∗G(x1, x̄ ′, x̄ ′)

=

⎧⎪⎨
⎪⎩

− m

h̄2 Im {G0(x̄
′, x̄ ′)}Re(F) x1 > x ′

1

+ m

h̄2 Im {G0(x̄
′, x̄ ′)}Re(F) x1 < x ′

1.
(B.6)

Appendix B.2. Integral with like Green functions

We also encounter expressions with a pair of similar 2D Green
functions

IGG(x1, x̄ ′, x̄ ′′) =
∫ ∞

−∞
dx2G0(x̄, x̄ ′)

∂

∂x1
G0(x̄, x̄ ′′) (B.7)

which, by using equation (A.5) and the identities in
equation (A.2), can be reduced to the form

= i

2π

∫ ∞

−∞
dεg(x ′

2, x ′′
2 ; ε)g(x1, x ′

1; E−ε) ∂
∂x1

g(x1, x ′′
1 ; E−ε).

(B.8)
Then the expressions for the 1D Green functions in
equation (A.3) provide explicit functional forms, which, as in
the previous case, depend on the value of x1. For the exterior
region |x1| > |x ′

1|, |x ′′
1 | this is

IGG(x1, x̄ ′, x̄ ′′) = ± i

2π

∫ ∞

−∞
dεgε(x

′
2, x ′′

2 )

×
[

ei
√

2m(E−ε)/h̄2|2x1−(x′
1+x′′

1 )|

i h̄4

m2

√
2m(E − ε)/h̄2

θ(E − ε)

− e−
√

2m(ε−E)/h̄2|2x1−(x′
1+x′′

1 )|
h̄4

m2

√
2m(ε − E)/h̄2

θ(ε − E)

]
(B.9)

where the + sign applies for x1 > x ′
1, x ′′

1 and the − sign for
x1 < x ′

1, x ′′
1 . This integral is also of interest for the interior

region when |x1| is between |x ′
1| and |x ′′

1 |:

IGG(x1, x̄ ′, x̄ ′′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+ m

h̄2
G0(x̄

′, x̄ ′′) x ′
1 > x1 > x ′′

1

− m

h̄2
G0(x̄

′, x̄ ′′) x ′′
1 > x1 > x ′

1.

(B.10)
The following combination is relevant:

F × IGG(x1, x̄ ′, x̄ ′′)

= Im

{
F

∫ ∞

−∞
dx2G0(x̄, x̄ ′)

∂

∂x1
G0(x̄, x̄ ′′)

+ F∗
∫ ∞

−∞
dx2G∗

0(x̄, x̄ ′′)
∂

∂x1
G∗

0(x̄, x̄ ′)
}
. (B.11)

For the exterior region IGG(x1, x̄ ′, x̄ ′′) is invariant under
exchange of coordinate arguments, so the expression above
vanishes, F × IGG(x1, x̄ ′, x̄ ′′) = 0, for the exterior region
|x1| > |x ′

1|, |x ′′
1 |. In the interior region IGG(x1, x̄ ′, x̄ ′′) simply

changes sign under such an exchange, so that

F × IGG(x̄
′, x̄ ′′) = ± m

h̄2
Im{FG0(x̄

′, x̄ ′′)− c.c.}

=

⎧⎪⎨
⎪⎩

+2
m

h̄2 Im{FG0(x̄
′, x̄ ′′)}, x ′

1 > x1 > x ′′
1

−2
m

h̄2 Im{FG0(x̄
′, x̄ ′′)}, x ′′

1 > x1 > x ′
1.

(B.12)

Appendix C. An effective two-particle state for the
many-body system

As soon as we consider pair interaction, in principle, we have
to allow for interaction between all possible pairs in the system.
In this appendix we reduce a full many-body system with pair
interaction to an effective description in terms of a pair of
interacting particles, both moving in the background of the
interaction field due to all the other electrons in the system.
This allows us to describe the pumping of singlets in terms
of the evolution of a singlet wavefunction very much like the
pumping of individual electrons by a single-particle state.

Using the composite notation for position introduced in
section 2, X = (x, σ ), the Heisenberg equation of motion of a
fermion creation operator with the Hamiltonian (4) is

ih̄∂t ψ̂
†(X, t) = h(x)ψ̂†(X, t)

+
∫

dX ′ψ̂†(X, t)ψ̂†(X ′, t)V (x, x ′)ψ̂(X ′, t). (C.1)

Consider 〈E0, N |ψ̂†(X1, t)ψ̂†(X2, t)|E2, N − 2〉, a matrix
element where |E0, N〉 is the N particle ground state of the
system, and |E2, N − 2〉 is an energy eigenstate with N − 2
particles. Using equation (C.1), we find that the equation of
motion of this matrix element is

ih̄∂t〈E0, N |ψ̂†(X1, t)ψ̂†(X2, t)|E2, N − 2〉
= (h(x1)+ h(x2))〈E0, N |ψ̂†(X1, t)ψ̂†(X2, t)|E2, N − 2〉

+
∫

dX ′V (x1, x ′)〈E0, N |ψ̂†(X1, t)ψ̂†(X ′, t)
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× ψ̂(X ′, t)ψ̂†(X2, t)|E2, N − 2〉
+

∫
dX ′V (x2, x ′)〈E0, N |ψ̂†(X1, t)ψ̂†(X2, t)

× ψ̂†(X ′, t)ψ̂(X ′, t)|E2, N − 2〉. (C.2)

Since both |E0, N〉 and |E2, N−2〉 are energy eigenstates,
we can replace ih̄∂t → E = E2 − E0 on the left-hand side of
the above equations. Furthermore,

ψ̂†(X ′, t)ψ̂(X ′, t)ψ̂†(X2, t)

= δ(X ′ − X2)ψ̂
†(X ′, t)+ ψ̂†(X2, t)ψ̂†(X ′, t)ψ̂(X ′, t)

(C.3)

due to the fermion commutation relations; here we denoted
δ(X ′ − X2) ≡ δσ ′,σ2δ(r

′ − r2). Making a mean-field
approximation, with the density of background electrons at X ′
defined by n(X ′, t) = 〈E0, N − 2|ψ̂†(X ′, t)ψ̂(X ′, t)|E0, N −
2〉, we define the two-particle state

�E(X1, X2, t)=〈E0, N |ψ̂†(X1, t)ψ̂†(X2, t)|E2, N − 2〉
(C.4)

and bring (C.2) into the form

E�E(X1, X2, t) = [h(x1)+ h(x2)+ V (x1, x2)]�E(X1, X2, t)

+
∫

dX ′[V (x1, x ′)+ V (x2, x ′)]n(X ′, t)�E(X1, X2, t).

The last line gives the mean-field influence of the rest of
the electrons with the particular pair of electrons at X1 and X2.
We can include this in the one-body potential that each particle
experiences: h(x)+∫

dX ′V (x, x ′)n(X ′, t) → h(x). Since the
two-body interaction V does not affect spin, we can factorize
out the spin part of the wavefunction. Considering specifically
the singlet subspace and by introducing the parametrization in
terms of the single-particle momentum labels k1, k2 we are led
to equation (5).
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